▎ 摘 要
Reduced graphene oxide - cerium oxide (rGO-CeO2) nanocomposite is prepared by simple hydrothermal method for enhanced charge storage supercapacitor performance. The prepared nanocomposite is characterized by various techniques, such as X-ray diffraction (XRD), Fourier Transform - Raman Spectra (FT-Raman), Field Emission - Scanning Electron Microscope (FE-SEM), High Resolution -Transmission Electron Microscope (HR-TEM), Thermo-gravimetric and Differential Thermal Analysis (TG-DTA), Cyclic Voltametric (CV), Galvanostatic Charge/Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS) studies to understand its morphology, composition, thermal stability and charge storage efficiency as electrode material. The nanocomposite formation is confirmed with FE-SEM and HR-TEM images where the ceria is anchored on the surface of the graphene sheets and the interplanar distances are observed as fringes. The Energy Dispersive Analysis of X-Ray (EDAX) has provided substantial evidence for the nanocomposite formation with the elemental composition. The maximum specific capacitance is measured as 280 F/g using GCD studies. The surface area of the nanocomposite is determined using the Brunauer-Emmett-Teller (BET) analysis.