▎ 摘 要
In the present work, we study the influence of adsorbed impurities, namely potassium atoms, on the energy spectrum of electrons in graphene. The electron states of the system are described in the frame of the self-consistent multiband strong-coupling model. It is shown that, at the ordered arrangement of potassium atoms corresponding to a minimum of the free energy, the gap arises in the energy spectrum of graphene. It is established that, at the potassium concentration such that the unit cell includes two carbon atoms and one potassium atom, the latter being placed on the graphene surface above a carbon atom at a distance of 0.286 nm, the energy gap is equal to similar to 0:25 eV. Such situation is realized if graphene is placed on a potassium support.