• 文献标题:   Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal-organic framework/reduced graphene oxide composite
  • 文献类型:   Article
  • 作  者:   WU ZB, YUAN XZ, ZHONG H, WANG H, ZENG GM, CHEN XH, WANG H, ZHANG L, SHAO JG
  • 作者关键词:  
  • 出版物名称:   SCIENTIFIC REPORTS
  • ISSN:   2045-2322
  • 通讯作者地址:   Hunan Univ
  • 被引频次:   53
  • DOI:   10.1038/srep25638
  • 出版年:   2016

▎ 摘  要

In this study, the composite of aluminum metal-organic framework MIL-68(Al) and reduced graphene oxide (MA/RG) was synthesized via a one-step solvothermal method, and their performances for pnitrophenol (PNP) adsorption from aqueous solution were systematically investigated. The introduction of reduced graphene oxide (RG) into MIL-68(Al) (MA) significantly changes the morphologies of the MA and increases the surface area. The MA/RG-15% prepared at RG-to-MA mass ratio of 15% shows a PNP uptake rate 64% and 123% higher than MIL-68(Al) and reduced graphene oxide (RG), respectively. The hydrogen bond and pi-pi dispersion were considered to be the major driving force for the spontaneous and endothermic adsorption process for PNP removal. The adsorption kinetics, which was controlled by film-diffusion and intra-particle diffusion, was greatly influenced by solution pH, ionic strength, temperature and initial PNP concentration. The adsorption kinetics and isotherms can be well delineated using pseudo-second-order and Langmuir equations, respectively. The presence of phenol or isomeric nitrophenols in the solution had minimal influence on PNP adsorption by reusable MA/RG composite.