▎ 摘 要
This work reports the formulation of water-based graphene oxide/acrylic nanocomposite inks, and the structural and electrical characterization of test patterns obtained by inkjet direct printing through a commercial piezoelectric micro-fabrication device. Due to the presence of heavily oxygenated functional groups, graphene oxide is strongly hydrophilic and can be readily dispersed in water. Through a process driven by UV irradiation, graphene oxide contained in the inks was reduced to graphene during photo-curing of the polymeric matrix. Printed samples of the nanocomposite material showed a decrease of resistivity with respect to the polymeric matrix. The analysis of the influence of printed layer thickness on resistivity showed that thin layers were less resistive than thick layers. This was explained by the reduced UV penetration depth in thick layers due to shielding effect, resulting in a less effective photo-reduction of graphene oxide.