▎ 摘 要
High thermal conductivity, extraordinary strength and biocompatibility of graphene make it as a promising material for future nanoelectronic applications. Graphene is an excellent candidate for DNA sensing because of its unique physical and chemical properties. Furthermore, DNA sensors base on nanostructured graphene have paved new way for genetic researchers to reconstruct metabolic pathways in cells, understand the progression of disease, and develop diagnostics and therapeutics. In particular, there is an essential need for developing the cost effective DNA detection holding the fact that it is urgent for the diagnosis of genetic or pathogenic diseases. In this paper, field effect transistor based on nanostructured graphene is studied for the purpose of electrical detection of deoxyribonucleic acid (DNA) hybridization. Electrical detection of DNA hybridization by modeling the conductance of graphene sheets is proposed. DNA concentration as a function of gate voltage is assumed and sensing factor is defined. Finally proposed model is compared with experimental data and good agreement is reported.