• 文献标题:   Plasmonic WS2 Nanodiscs/Graphene van der Waals Heterostructure Photodetectors
  • 文献类型:   Article
  • 作  者:   ALAMRI M, GONG MG, COOK B, GOUL R, WU JZ
  • 作者关键词:   ws2 nanodisc, plasmonic, photodetector, transferfree, optoelectronic
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Univ Kansas
  • 被引频次:   9
  • DOI:   10.1021/acsami.9b09262
  • 出版年:   2019

▎ 摘  要

Two-dimensional material van der Waals (vdW) heterostructures provide an excellent platform for design of novel optoelectronics. In this work, transition-metal dichalcogenide WS2 nanodiscs (WS2-NDs) of lateral dimension of 200-400 nm and layer number of 4-7 were synthesized on graphene using a layer-by-layer, transfer-free chemical vapor deposition. On this WS2-NDs/graphene vdW heterostructures, localized surface plasmonic resonance (LSPR) was achieved, resulting in remarkably enhanced light absorption as compared to the counterpart devices with a continuous WS2 layer (WS2-CL/graphene). Remarkably, the photoresponsivity of 6.4 A/W on the WS2-NDs/graphene photodetectors is seven times higher than that (0.91 A/W) of the WS2-CL/graphene vdW heterostructures at an incident 550 nm light intensity of 10 mu W/cm(2). Furthermore, the WS2-NDs/graphene photodetectors exhibit higher sensitivity to lower lights. Under 550 nm light illumination of 3 mu W/cm(2), which is beyond the sensitivity limit of the WS2-CL/graphene photodetectors, high photoresponsivity of 8.05 A/W and detectivity of 2.8 x 10(10) Jones are achieved at V-sd = 5 V. This result demonstrates that the LSPR WS2-NDs/graphene vdW heterostructure is promising for scalable high-performance optoelectronics applications.