▎ 摘 要
We investigate the surface vector plasmonic lattice solitons (PLSs) in semi-infinite graphene-pair arrays (GPAs). The surface vector PLSs are composed of two components which are associated with different band gaps. Both components undergo mutual self-trapping at the boundary of the semi-infinite structure when the self-focusing nonlinearity of graphene and the light diffraction reach a balance. Thanks to the strong confinement of SPPs, the surface vector PLSs can be squeezed into a deep-subwavelength width of similar to 0.003 lambda. By comparing with bulk solitons, the surface PLSs are more readily to excite by external waves and more sensitive to the surrounding environment. The study may develop promising applications in all-optical switching devices and optical sensors on deep-subwavelength scale. (C) 2017 Optical Society of America