• 文献标题:   Strained graphene Josephson junction with anisotropic d-wave superconductivity
  • 文献类型:   Article
  • 作  者:   GOUDARZI H, KHEZERLOU M, KAMALIPOUR H
  • 作者关键词:   graphene, dwave superconductivity, josephson current, andreev bound state
  • 出版物名称:   SUPERLATTICES MICROSTRUCTURES
  • ISSN:   0749-6036
  • 通讯作者地址:   Urmia Univ
  • 被引频次:   6
  • DOI:   10.1016/j.spmi.2015.03.014
  • 出版年:   2015

▎ 摘  要

Effect of proximity-induced superconductivity in the new two-dimensional structures, as graphene and topological insulator on the Andreev bound states (ABSs) and Josephson supercurrent has attracted much efforts. Motivated by this subject, we study, in particular, the influence of anisotropic Fermi velocity and unconventional d-wave pairing in a strained graphene-based superconductor/normal/ superconductor junction. Strain is applied in the zigzag direction of graphene sheet. In this process, effect of zero energy states and Fermi wavevector mismatch are investigated. It is shown, that strain up to 22% in graphene lattice differently affects Josephson currents in parallel and perpendicular directions of strain. Strain causes to exponentially decrease the supercurrent in the strain direction, whereas increase for other direction. We find that, in one hand, the ABSs strongly depend on strain and, on the other hand, a gap opens in the states with respect to non-zero incidence angle of quasiparticles, where a period of 2 pi is obtained for Andreev states. Moreover, we observe no gap for theta(s) not equal 0, when the zero energy states (ZESs) occur in alpha = pi/4 due to anisotropic superconducting gap. In this case, ABSs have a period of 4 pi.S (C) 2015 Elsevier Ltd. All rights reserved.