▎ 摘 要
We are presenting and analyzing a graphene-based nanophotonic device to operate as a resonator-add/drop filter, whose control is obtained by varying the graphene chemical potential. That device consists of graphene-based waveguides, two directional couplers and a racetrack resonator with 90 degrees bends. Since the graphene chemical potential provides the achievement of the necessary parameters, the resonance and filtering of the signals are obtained by applying the correct value of the graphene chemical potential in the graphene nanoribbons. The results of this study should help in the development of new graphene-based nanophotonic devices operating in the terahertz and infrared range (including in the C-band of the International Telecommunication Union - ITU), for use in future communications networks. (C) 2015 Elsevier B.V. All rights reserved.