• 文献标题:   Novel hierarchically porous Ti-MOFs/nitrogen-doped graphene nanocomposite served as high efficient oxygen reduction reaction catalyst for fuel cells application
  • 文献类型:   Article
  • 作  者:   QIN XL, HUANG Y, WANG K, XU TT, WANG YL, LIU PB, KANG Y, ZHANG Y
  • 作者关键词:   oxygen reduction reaction, titaniummetal organic framework, nitrogen doped graphene, fuel cell
  • 出版物名称:   ELECTROCHIMICA ACTA
  • ISSN:   0013-4686 EI 1873-3859
  • 通讯作者地址:   Northwestern Polytech Univ
  • 被引频次:   19
  • DOI:   10.1016/j.electacta.2018.12.045
  • 出版年:   2019

▎ 摘  要

Novel hierarchically porous titanium-metal organic frameworks/nitrogen-doped graphene (Ti-MOFs/NG) nanocomposite derived from titanium-metal organic frameworks (Ti-MOFs) and the nitrogen-doped graphene (NG) has been originally synthesized successfully. Notably, the Ti-MOFs/NG nanocomposite has been for the first time investigated in detail, as oxygen reduction reaction (ORR) catalyst of cathodic materials for fuel cells. The results show that the Ti-MOFs/NG nanocomposite possesses excellent ORR performances, whether in alkaline or acidic medium, due to existences of the Ti3N2-x, C2O7Ti2.3, H2Ti5O11, Ti and TiO active ORR segments. Specifically, the onset potential (E-0) and the Tafel slope value of the Ti-MOFs/NG nanocomposite are 1.14 V and 17.84 mV dec(-1) in 0.1 M HClO4, respectively. Similarly, high ORR efficiency of the Ti-MOFs/NG nanocomposite also exhibit in alkaline medium. The relative current density can still keep 99.88% of the original value after 10800 s measurements in 0.1 M KOH. Additionally, small electrochemical impedance and excellent tolerance toward fuel molecules have been exhibited in both electrolytes. These ORR properties are superior to those of most of previously reported materials derived from other MOFs, in both alkaline and acidic media. Thus, the Ti-MOFs/NG nanocomposite is as a novel promising candidate for ORR catalyst to solve the main problems of sluggish reaction kinetics of the ORR, high cost of precious metal catalysts and low durability of the traditional catalysts, applied to fuel cells, metal-air batteries and further to water splitting in energy conversion and storage devices. (C) 2018 Elsevier Ltd. All rights reserved.