▎ 摘 要
Smart functional nanomaterials colorimetrically responsive to all-pH and a wide temperature range are urgently needed due to their widespread applications in biotechnology, drug delivery, diagnosis and optical sensing. Although graphene quantum dots possess remarkable advantages in biological applications, they are only stable in neutral or weak acidic solutions, and strong acidic or alkaline conditions invariably suppress or diminish the fluorescence intensity. Herein, we report a new type of water-soluble, multicolor fluorescent graphene quantum dot which is responsive to all-pH from 1 to 14 with the naked eye. The synthesis was accomplished by electrolysis of the graphite rod, followed by refluxing in a concentrated nitric and sulfuric acid mixed solution. We demonstrate the novel red fluorescence of quinone structures transformed from the lactone structures under strong alkaline conditions. The fluorescence of the resulting graphene quantum dots was also found to be responsive to the temperature changes, demonstrating their great potential as a dual probe of pH and temperature in complicated environments such as biological media.