▎ 摘 要
The development of sensitive, fast and efficient nanointerfaces as platforms for electrochemical sensing devices for the detection of environmental pollutant including antibiotic pollutant has become a matter of priority for public safety. We report herein a benzene sourced graphene-gold nanoparticle sensor for the detection of tetracycline using chronoamperometry. Structural analysis using Raman Spectroscopy and x-ray diffraction spectroscopy (XRD) confirmed the presense of few-layer graphene. Atomic force (AFM) and scanning electron microscopy (SEM) characterization results confirmed the synthesized graphene to be thin flat sheet-like material with wide surface area and a thickness of less than 1 nm. Cyclic voltammetry characterization of the fabricated modified electrodes showed diffusion controlled process for the oxidation of tetracycline. The modified electrode exhibited a fast response to the detection of tetracycline and a sensitivity of 1,86x10(2) mu A/mM/cm(2).The theoretical detection limit (S/N=3) was 1,60x10(-1) mu M and the linear dynamic range was from 2,90x10(1) mu M to 1.53x10(3) mu M.