▎ 摘 要
The mathematical and numerical analysis of the Graphene infrared tunable frequency selective surface (FSS) for far-infrared spectrum has been clarified. The proposed FSS shows different properties of transmittance, reflectance, polarization variation for the different range of fermi voltage which can be tuned by external biasing. Angular changes in the graphene plane demonstrate different frequency responses of reflected wave polarization. Proposed structures are also computed at normal as well as the complementary condition of the same design. The proposed structure also computed the variation in the many parameters with the rotation change of the frequency selective surface structure. It can observe more than 60% of the overall transmittance for the wide range of the frequency. The ultrathin and easy to fabricate structure opens up the door for various applications such as reflector, absorber, polarizer, a modulator for the THz regime.