▎ 摘 要
Thermal expansion properties of hydrogenated graphene are investigated by performing the first-principles calculations. We find that both fully hydrogenated graphene (graphane) and half hydrogenated graphene (graphone) exhibit negative thermal expansion properties at low temperatures. Their thermal expansion behaviors display the hydrogenation-dependent features: hydrogenated graphene with boat-like structures possess better negative thermal expansion properties than those with chair-like structures. In particular, the graphane with boat-like structure shows giant negative thermal expansion, with thermal expansion coefficient of about -4.1 x 10(-5) K-1. Such different thermal behaviors are ascribed to different vibrational features, and the typical modes contributing to the negative thermal properties of the systems are addressed. Our results will be of importance for both fundamental understanding and the application of this family in nanodevices in the future.