▎ 摘 要
Additively manufactured (AM) supercapacitor platforms are fabricated from bespoke filaments, which are comprised of electro-conductive graphene (20 wt%) incorporated polylactic acid (80 wt%), via fused deposition modeling and denoted as G/AMEs. The G/AMEs are shown to be capable of acting as a template for the electrodeposition of metals/metal oxides, in particular MoO2 nanowires (MoO2-G/AMEs), which are subsequently explored as a capacitor within 1 m H2SO4, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-butyl-3-methylimidazolium tetrafluoroborate. Optimization of the MoO2-G/AMEs demonstrates capacitance up to 1212 F g(-1) when used in a symmetric arrangement. The material science described herein represents a significant enhancement in unlocking AMs potential as a valid manufacturing route for device level capacitance architectures.