• 文献标题:   Fabrication and Characterization of Superhydrophobic Graphene/Titanium Dioxide Nanoparticles Composite
  • 文献类型:   Article
  • 作  者:   WU XH, THEN YY
  • 作者关键词:   superhydrophobic, graphene, titanium dioxide, dip coating, contact angle
  • 出版物名称:   POLYMERS
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   4
  • DOI:   10.3390/polym14010122
  • 出版年:   2022

▎ 摘  要

Materials with superhydrophobic surfaces have received vast attention in various industries due to their valuable properties, such as their self-cleaning and antifouling effects. These promising superhydrophobic properties are taken into high priority, particularly for medical devices and applications. The development of an ideal superhydrophobic surface is a challenging task and is constantly progressing. Various strategies have been introduced; however, a minority of them are cost-effective. This work presents a facile fabrication of the superhydrophobic surface by using graphene and titanium dioxide (TiO2) nanoparticles. The graphene and TiO2 hybrid nanoparticles are dip-coated on a biodegradable thermoplastic poly(lactic acid) (PLA) substrate. The thermoplastic PLA is approved by the Food and Drug Administration (FDA), and is widely utilized in medical devices. The graphene/TiO2 coating is substantiated to transform the hydrophilic PLA film into superhydrophobic biomaterials that can help to reduce hazardous medical-device complications. The surface wettability of the graphene/TiO2 nanoparticle-coated PLA surface was evaluated by measuring the apparent water contact angle. The surface chemical composition and surface morphology were analyzed via Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The graphene/TiO2-coated PLA film achieved superhydrophobic properties by demonstrating a water contact angle greater than 150 degrees. The water contact angle of the graphene/TiO2 coating increased along with the concentration of the nanoparticles and the ratio of TiO2 to graphene. Moreover, the graphene/TiO2 coating exhibited excellent durability, whereby the contact angle of the coated surface remained unchanged after water immersion for 24 h. The duration of the effectiveness of the superhydrophobic coating suggests its suitability for medical devices, for which a short duration of administration is involved. This study reports an easy-to-replicate and cost-effective method for fabricating superhydrophobic graphene/TiO2-coated surfaces, which additionally substantiates a potential solution for the manufacturing of biomaterials in the future.