▎ 摘 要
This paper reported a facile one-pot strategy for fabrication of sulfonic graphene oxide-epoxy resin nanocomposites. The rheological and thermal properties were employed to characterize the viscosity and the curing temperature of epoxy resin. Fourier transform infrared spectra for sulfonic graphene oxide and nanocomposites indicated that the sulfonic graphene oxide contains chemical cross-linking responsible for better interactions with the epoxy resin. The state of dispersion was evaluated at different scales by still picture camera and scanning electron microscopy (SEM). Tensile property tests indicated that the tensile strength and elasticity modulus of sulfonic graphene oxide-epoxy resin nanocomposites decreased slowly with increasing of sulfonic graphene oxide content. The critical flexural property and impact strength of epoxy resin filled with sulfonic graphene oxide nanocomposites were measured. The content, size, and dispersion state of sulfonic graphene oxide were examined. It was found that the content of sulfonic graphene oxide has greater impact on both flexural property and impact strength of nanocomposites compared with other conditions. For instance, the impact strength increased by 113.0% and the flexural strength and modulus increased by 39.3% and 55.7% using 1 wt.% sulfonic graphene oxide as compared to neat epoxy resin.