• 文献标题:   Remote Floating-Gate Field-Effect Transistor with 2-Dimensional Reduced Graphene Oxide Sensing Layer for Reliable Detection of SARS-CoV-2 Spike Proteins
  • 文献类型:   Article
  • 作  者:   JANG HJ, SUI XY, ZHUANG W, HUANG XD, CHEN M, CAI XL, WANG YL, RYU B, PU HH, ANKENBRUCK N, BEAVIS K, HUANG J, CHEN JH
  • 作者关键词:   sarscov2 biosensor, graphene oxide, rfgfet, drift, ph detection
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   5
  • DOI:   10.1021/acsami.2c04969 EA MAY 2022
  • 出版年:   2022

▎ 摘  要

Despite intensive research of nanomaterials-based field-effect transistors (FETs) as a rapid diagnostic tool, it remains to be seen for FET sensors to be used for clinical applications due to a lack of stability, reliability, reproducibility, and scalability for mass production. Herein, we propose a remote floating-gate (RFG) FET configuration to eliminate device-to-device variations of twodimensional reduced graphene oxide (rGO) sensing surfaces and most of the instability at the solution interface. Also, critical mechanistic factors behind the electrochemical instability of rGO such as severe drift and hysteresis were identified through extensive studies on rGO-solution interfaces varied by rGO thickness, coverage, and reduction temperature. rGO surfaces in our RFGFET structure displayed a Nemstian response of 54 mV/pH (from pH 2 to 11) with a 90% yield (9 samples out of total 10), coefficient of variation (CV) < 3%, and a low drift rate of 2%, all of which were calculated from the absolute measurement values. As proof-of-concept, we demonstrated highly reliable, reproducible, and label-free detection of spike proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a saliva-relevant media with concentrations ranging from 500 fg/mL to 5 mu g/mL, with an R-2 value of 0.984 and CV < 3%, and a guaranteed limit of detection at a few pg/mL. Taken together, this new platform may have an immense effect on positioning FET bioelectronics in a clinical setting for detecting SARS-CoV-2.