▎ 摘 要
In this paper, the results of a comparative study between experimental measurements and technology computer-aided design (TCAD) simulations of graphene field-effect transistors (GFET) are presented. Our simulations were performed to study the electrical properties of few-layer graphene, and the physical approach to the simulation tools is described by using the basics of band theory, Poisson's equation, the continuity equation and the drift diffusion equations that are suitable for devices with small active regions. A correct formulation of the carrier density was performed to take into account the quantum capacitance. The modeled current was compared to the measured results for a prototype and was shown to be accurate and to have a predictive behavior.