▎ 摘 要
One of the methods of obtaining reduced graphene oxide (rGO) involves the oxidation of graphite to graphene oxide, which is then exfoliated and reduced. Each of these stages has a decisive influence on the properties of the produced nanoadditive, which determines its subsequent application. The process conditions which are examined during the oxidation stage are related to: The mixing time of the reactants before oxidation, sonication of the reaction mixture, and its composition. During reduction optimization, in turn, the form of the GO sample and the method of its purification, as well as the temperature at which this process took place, are examined. At each stage, the determined structural parameters of the produced materials (GO and rGO) are related to their morphology (SEM-scanning electron microscope), oxidation state (FTIR-Fourier transform infrared spectroscopy, EDS-energy-dispersive spectrometer), structure defect (Raman spectroscopy), as well as the number of layers and crystalline structure (WAXS-wide-angle X-ray scattering). The obtained results show that the shorter mixing time of the reactants determines the formation of more oxygen functional groups. On the basis of the obtained results, the process conditions that enable the production of multilayer, well-exfoliated reduced graphene oxide, with only a slightly defected structure, are established.