• 文献标题:   Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting
  • 文献类型:   Article
  • 作  者:   GOVINDHAN M, MAO B, CHEN AC
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:   Lakehead Univ
  • 被引频次:   31
  • DOI:   10.1039/c5nr06726j
  • 出版年:   2016

▎ 摘  要

A cost-effective, non-noble metal based high-performance electrocatalyst for the oxygen evolution reaction (OER) is critical to energy conversion and storage processes. Here, we report on a facile and effective in situ strategy for the synthesis of an advanced nanocomposite material that is comprised of cobalt quantum dots (Co QDs, similar to 3.2 nm), uniformly dispersed on reduced graphene oxide (rGO) as a highly efficient OER electrocatalyst platform. This nanocomposite electrocatalyst afforded a mass activity of 1250 A g(-1) at a low overpotential (eta) of 0.37 V, a small Tafel slope of similar to 37 mV dec(-1) and a turnover frequency (TOF) of 0.188 s(-1) in 0.1 M KOH, comparing favorably with state-of-the-art RuO2, IrO2 and Pt/C catalysts. The synergy between abundant catalytically active sites through the fine dispersion of Co QDs, and enhanced electron transfer generated from the graphene resulted in first-rate electrocatalytic properties toward the OER. These merits coupled with the higher stability of the nanocomposite hold great promise for triggering breakthroughs in electrocatalysis for water splitting.