▎ 摘 要
The use of graphene as a conductive additive to enhance the rate capability and cycle stability of Li4Ti5O12 electrode material has been demonstrated. Li4Ti5O12 and its composite with graphene (1.86 wt%) are prepared by ball milling and simple chemical method, respectively. Among the as-synthesized composites, Li4Ti5O12 particles uniformly clung to the graphene sheets. When used as an electrode material for lithium ion battery, the composite presents excellent rate performance and high cyclic stability. It is found that the composite displayed high-rate capacity of 118.7 mAh g(-1) at 20 degrees C. Furthermore, the composite exhibits good cycle stability, retaining over 96 % of its initial capacity after 50 cycles at 10 C. The excellent electrochemical performance is attributed to a decrease in the charge-transfer resistance.