▎ 摘 要
This article describes covalent functionalization of graphene oxide (GO) with poly(2-hydroxyethyl methacrylate)-graft-poly(epsilon-caprolactone) [P(HEMA-g-CL)] via 'living' polymerization techniques and preparation of its electrospun nanofibers with gelatin. For this purpose, the GO was synthesized by oxidizing pristine graphite powder and then acetyl chloride was incorporated into the GO to afford an atom transfer radical polymerization (ATRP) macroinitiator (GO-Cl). The synthesized macroinitiator was employed for HEMA polymerization via ATRP technique to produce GO-g-PHEMA. Afterward, CL was graft copolymerized from the hydroxyl groups of the PHEMA via ring-opening polymerization approach to afford GO-g-[P(HEMA-g-CL)] nanocomposite. The solutions of the GO-g-[P(HEMA-g-CL)] and gelatin were electrospun to fabricate uniform, conductive, and biocompatible nanofibers. The morphology, in vitro degradability, biocompatibility, hydrophilicity, and conductivity of the GO-g-[P(HEMA-g-CL)]/gelatin electrospun nanofibers were investigated. It is expected that the prepared nanofibers find application as a scaffolding biomaterial for regenerative medicine, mainly due to their biocompatibility, degradability, and electrical conductivity.