▎ 摘 要
Identification of catalytic sites for oxygen reduction and evolution reactions (ORR/OER) is critical to rationally develop highly efficient bifunctional carbon-based metal-free electrocatalyst. Here, a unique defect-rich N-doped ultranarrow graphene nanoribbon with a high aspect ratio that exhibits excellent ORR/OER bifunctional activities and impressive long-term cycling stability in Zn-air batteries is successfully fabricated. Density functional theory calculations indicates that the topological defects (e.g., pentagons and heptagons) cooperated with pyridinic-N dopants on the edges are more favorable to electrocatalytic activity toward ORR and OER. This work provides a new design principle for carbon-based electrocatalytic nanomaterials.