• 文献标题:   Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite
  • 文献类型:   Article
  • 作  者:   LIU XW, CHENG JX, LI WH, ZHONG XW, YANG ZZ, GU L, YU Y
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:   Univ Sci Technol China
  • 被引频次:   48
  • DOI:   10.1039/c4nr01493f
  • 出版年:   2014

▎ 摘  要

A three-dimensional (3D) interconnected graphene framework (GF)based SnO2 nanocomposite (3D SnO2/GFs) was prepared using self-assembly of polystyrene (PS)@SnO2 nanospheres and graphene oxide (GO) nanosheets under suitable pH conditions, followed by a thermal treatment. The electroactive material (SnO2) is anchored to the wall of electrochemically and ionically conductive 3D interconnected GFs. When used as anodes for LIBs, the 3D SnO2/GFs deliver an excellent reversible capacity (1244 mA h g(-1) in 50 cycles at 100 mA g(-1)) and outstanding rate capability (754 mA h g(-1) in 200 cycles at 1000 mA g(-1)). The ultra-small size of SnO2 (sub 10 nm) and dimensional confinement of SnO2 nanoparticles by the wall of GFs limit the volume expansion upon lithium insertion, and the 3D interconnected porous structures serve as buffered spaces during charge-discharge and result in superior electrochemical performance by facilitating the electrolyte to contact the entire nanocomposite materials and reduce lithium diffusion length in the nanocomposite.