• 文献标题:   Graphene nanoencapsulation action at an air/lipid interface
  • 文献类型:   Article
  • 作  者:   FERRARI GA, CHACHAM H, DE OLIVEIRA AB, MATOS MJS, BATISTA RJC, MEIRELES LM, BARBOZA APM, SILVESTRE I, NEVES BRA, LACERDA RG
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS SCIENCE
  • ISSN:   0022-2461 EI 1573-4803
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1007/s10853-022-07030-0 EA MAR 2022
  • 出版年:   2022

▎ 摘  要

In the present work, we apply a microfluidic channel platform to study mechanical and adhesion properties of suspended graphene in contact with oleic acid (a lipid). In the platform, one side of the suspended graphene, atop a window in a fluidic channel, is placed in contact with the lipid, and the mechanical response of graphene is experimentally accessed with an atomic force microscope probe. We observe a strong effect arising from the presence of oleic acid: the probe undergoes a large jump-to-contact effect, being pulled and partially encapsulated by graphene, in a phagocytosis-like phenomenon, until it penetrates 0.2 mu m into graphene. In contrast, such encapsulation effect is negligible in the absence of oleic acid in the channel, with probe penetration of less than 0.02 mu m. The lipid-induced encapsulation effect is observed to occur concurrently with graphene delamination from the window walls. Molecular dynamics simulations and continuum mechanics analytical modeling are also performed, the latter allowing quantitative fittings to the experiments. [GRAPHICS]