▎ 摘 要
Using angle-and time-resolved two-photon photoelectron spectroscopy we observe a single series of image-potential states of graphene on monolayer (MLG) and bilayer graphene (BLG) on SiC(0001). The first image-potential state on MLG(BLG) has a binding energy of 0.93 eV (0.84 eV). Lifetimes of the first three image-potential states of MLG are 9, 44 and 110 fs. Onhydrogen-intercalated, quasi-freestanding graphene no unoccupied states are observed. We attribute this to the absence of occupied initial states for direct transitions into image-potential states at photon energies below the work function used in two-photon photoemission. The work function varies between 4.14 and 4.79 eV, but the vacuum level stays similar to 4.5 eV above the Dirac point for all surfaces studied. This finding suggests that direct excitation of image-potential states cannot be achieved by doping and the electron dynamics for free-standing graphene is not accessible by two-photon photoemission using photon energies below the work function.