• 文献标题:   One-step synthesis of tunable nitrogen-doped graphene from graphene oxide and its high performance field emission properties
  • 文献类型:   Article
  • 作  者:   YU SX, TANG RJ, ZHANG K, WU SY, YANG XL, WU WJ, CHEN YJ, SHEN Y, ZHANG XL, QIAN JC, SONG YN, SUN Z
  • 作者关键词:  
  • 出版物名称:   VACUUM
  • ISSN:   0042-207X
  • 通讯作者地址:   East China Normal Univ
  • 被引频次:   3
  • DOI:   10.1016/j.vacuum.2019.108817
  • 出版年:   2019

▎ 摘  要

Simultaneous reduction, repairing and doping of graphene oxide has been realized by the chemical vapor deposition method, using acetonitrile as a nitrogen source. A step-wise increase of acetonitrile partial pressure from 15 to 90 Pa results in nitrogen doped graphene (NG) with gradually tuning N-doping concentration from 0.38 to 0.66 at% and systematically rising graphite-N ratio from 23.25 to 45.39%, which in turn modulates field emission performance and enhance the stability. Raman spectroscopy and X-ray photoelectron spectroscopy suggest pyrrolic-N and pyridinic-N doping bring defects, while defects decrease as N-doping concentration increases due to the rising of graphite-N ratio. Proper defects may increase emission site density and N-doping can reduce work function. When N-doping concentration is controlled at 0.42 at%, NG exhibits the considerable decreasing 'of turn-on field from 3.35 to 2.18 V/mu m at the emission current of 10 mu A/cm (2) and increasing of field enhancement factor from 1835 to 2967. It also reveals a good field emission stability with no degradation, which is superior to pristine reduced GO emitters. It is suggested the NG with tuning concentration of three type nitrogen emitter is a widely candidate for various field emission devices and applications.