▎ 摘 要
The interaction of two-dimensional graphene and its derivatives with biological interfaces exhibits distinct properties and advantages over traditional dimensional particles, offering potential strategies for the design and development of functionalized pharmaceutical carriers. Apart from the excellent electrical, thermal and optical properties, the two-dimensional structure endows the graphene stronger interactions with cell membranes and then induces obvious cellular response. These responses include the horizontal friction/slant insertion or sandwiched superstructure, selective internalization by phagocytes, folding effect upon the limited intracellular space, autophagy phenomenon and invisible activation. Based on these unique interfacial effects and theoretical simulation mechanisms, rational designs will meet the needs of drug delivery, vaccine carriers, imaging and sensing, and photothermal therapy as well as good biosafety. This review concludes our researches of exploring the biological interface effects, dynamic molecular mechanism, and applications regarding graphene (oxide) in the past 10 years. Meanwhile, it also covers the latest international progress, in order to provide theoretical basis and prospective prediction for the design, construction, and application of efficient and safe graphene systems.