• 文献标题:   Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries
  • 文献类型:   Article
  • 作  者:   PATEL MUM, LUONG ND, SEPPALA J, TCHERNYCHOVA E, DOMINKO R
  • 作者关键词:   lis battery, graphene, cellulose, composite, cycling stability, coulombic efficiency
  • 出版物名称:   JOURNAL OF POWER SOURCES
  • ISSN:   0378-7753 EI 1873-2755
  • 通讯作者地址:   Natl Inst Chem
  • 被引频次:   29
  • DOI:   10.1016/j.jpowsour.2013.12.081
  • 出版年:   2014

▎ 摘  要

Graphene/cellulose composites were prepared and studied as potential host matrixes for sulphur impregnation and use in Li-S batteries. We demonstrate that with the proper design of a relatively low surface area graphene/cellulose composite, a high electrochemical performance along with good cyclability can be achieved. Graphene cellulose composites are built from two constituents: a twodimensional electronic conductive graphene and cellulose fibres as a structural frame; together they form a laminar type of pore. The graphene sheets that uniformly anchor sulphur molecules provide confinement ability for polysulphides, sufficient space to accommodate sulphur volumetric expansion, a large contact area with the sulphur and a short transport pathway for both electrons and lithium ions. Nano-cellulose prevents the opening of graphene sheets due to the volume expansion caused by dissolved polysulphides during battery operation. This, in turn, prevents the diffusion of lithium polysulphides into the electrolyte, enabling a long cycle life. (c) 2013 Elsevier B.V. All rights reserved.