• 文献标题:   Electroconductive performance of polypyrrole/reduced graphene oxide/carbon nanotube composites synthesized via in situ oxidative polymerization
  • 文献类型:   Article
  • 作  者:   TRAN XT, PARK SS, SONG S, HAIDER MS, IMRAN SM, HUSSAIN M, KIM HT
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS SCIENCE
  • ISSN:   0022-2461 EI 1573-4803
  • 通讯作者地址:   Hanyang Univ
  • 被引频次:   7
  • DOI:   10.1007/s10853-018-3043-4
  • 出版年:   2019

▎ 摘  要

We report a novel approach to the fabrication of polypyrrole/reduced graphene oxide/carbon nanotube (PPy/rGO/CNT) composites. Firstly, the growth of carbon nanotube (CNT) and the partial reduction of graphene oxide occurred simultaneously within 10s under ambient conditions using a microwave-assisted approach. Polypyrrole (PPy) was then integrated with reduced graphene oxide/carbon nanotube (rGO/CNT) hybrid materials through in situ oxidative polymerization of pyrrole in the presence of dodecylbenzenesulfonic acid, which acts as a stabilizing and doping agent. The morphological, structural, electrical, and thermal properties of PPy/rGO/CNT composites are discussed in detail, and a possible formation mechanism is proposed. The results indicate that introducing rGO/CNT into the PPy polymer can improve both the thermal and electrical properties of the polymer. Enhanced conductivity of 1214.16S/m was observed in the sample with 5wt% rGO/CNT loading with a pressing pressure of 10MPa compared to that in individual PPy and PPy/GO samples pressed at the same pressing pressure. This study provides a simple approach to the preparation of PPy/rGO/CNT composites with tunable electrical properties for a variety of potential electronic applications.