• 文献标题:   Facile zinc oxide nanowire growth on graphene via a hydrothermal floating method: towards Debye length radius nanowires for ultraviolet photodetection
  • 文献类型:   Article
  • 作  者:   COOK B, LIU QF, LIU JW, GONG MG, EWING D, CASPER M, STRAMEL A, WU JD
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY C
  • ISSN:   2050-7526 EI 2050-7534
  • 通讯作者地址:   Univ Kansas
  • 被引频次:   10
  • DOI:   10.1039/c7tc03325g
  • 出版年:   2017

▎ 摘  要

Vertically aligned zinc oxide nanowires on graphene (ZnO-NW/graphene) heterojunction nanohybrids combine the superior sensitivity of crystalline ZnO-NWs with high charge mobility of graphene to provide an ideal platform for high-performance detectors and sensors. Controlling the ZnO-NW microstructure and ZnO-NW/graphene interface is of primary importance for the device performance. This work explores floating hydrothermal growth of ZnO-NWs on seedless and ZnO seeded graphene, and investigates the effects of the microstructure and interface on the performance of ZnO-NW/graphene ultraviolet (UV) detectors. It has been found that the ZnO seed layer facilitates the growth of a dense ZnO-NW array with a NW radius approaching the Debye length. In contrast, the seedless process results in a lower NW areal density and a larger NW diameter on the order of sub-to-few micrometers. Consequently, higher UV responsivity up to 728 A W-1 was obtained in the former. However, a strong charge trapping effect was also observed, which is attributed to the poorer crystallinity of the ZnO-NWs originating from the ZnO seed layer. These results shed light on the importance of controlling the microstructure and interface towards high-performance ZnO-NW/graphene nanohybrid optoelectronics.