▎ 摘 要
Fluorinated graphene(FG) was firstly reduced by hydrazine hydrate to form the hydrophilic FG (HFG), and then magnetic Fe3O4 nanoparticles were further grafted onto the surface of HFG to synthesize HFG-Fe3O4 composite. The morphology, structure and chemical property of the samples were characterized by TEM, SEM, FTIR, XRD and XPS. In addition, the demulsification performance of HFG-Fe3O4 for oily wastewater was investigated and some affecting factors were discussed in detail. Moreover, the demulsification mechanism of HFG-Fe3O4 was proposed as well. The results show that the HFG-Fe3O4 is one kind of two. dimensional sheet-like material with Fe3O4 nanoparticles being uniformly distributed on its surface. The HFG-Fe3O4 has good demulsification performance on acidic and neutral oily wastewater, and its optimum dosage is 600 mg/L. Under the acidic and neutral conditions, the electrostatic attraction between HFG-Fe3O4 and the oily wastewater, as well as the pi-pi interaction between HFG-Fe3O4 and asphaltenes are the main forces pro. moting the oil separation from oily wastewater. However, the electrostatic repulsion between HFG-Fe3O4 and oily wastewater increases drastically under the alkaline condition, and ultimately results in the reduction of demulsification efficiency. What' s more, HFG-Fe3O4 still has excellent demulsification performance after 4 cycles, suggesting it has superior recyclability.