▎ 摘 要
Making inexpensive proton exchange membrane with high proton conductivity for the proton exchange membrane fuel cell (PEMFC) is still a challenging problem. Graphene oxide (GO) nanoparticles grafted with (3-aminopropyl) triethoxy silane (APTES) were prepared and then incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix by solution casting to make the composite proton exchange membrane. The obtained nanoparticles and composite membranes were characterized by XRD, FT-IR, Raman, TGA, SEM, and UTM. GO treated with the silane coupling agent improved the dispersion stability and compatibility of GO in SPEEK, which decreased the agglomeration of GO nanoparticles in the SPEEK membrane. The prepared nanocomposite membranes exhibited better water retention properties and proton conductivity. The proton conductivity of the SPEEK membrane with 2 wt% amine functionalized GO (AGO) reached 11.32 mS/cm at 120 degrees C, which was 2.45-times higher than that of the pristine SPEEK membrane. The reason was that AGO nanoparticles disperse uniformly in the SPEEK membranes, which provides new channels for proton transfer. The potential application of this composite membrane in the PEMFC was indicated.