• 文献标题:   Silicon nanoparticles grown on a reduced graphene oxide surface as high-performance anode materials for lithium-ion batteries
  • 文献类型:   Article
  • 作  者:   KANNAN AG, KIM SH, YANG HS, KIM DW
  • 作者关键词:  
  • 出版物名称:   RSC ADVANCES
  • ISSN:   2046-2069
  • 通讯作者地址:   Hanyang Univ
  • 被引频次:   14
  • DOI:   10.1039/c5ra27877e
  • 出版年:   2016

▎ 摘  要

The growth of silicon nanoparticles on a graphene surface without forming the unwanted silicon carbide (SiC) phase has been challenging. Herein, the critical issues surrounding silicon anode materials for lithium-ion batteries, such as electrode pulverization, unstable solid electrolyte interphase and low electrical conductivity, have been addressed by growing silicon nanoparticles smaller than 10 nm, covalently bonded to a reduced graphene oxide (rGO) surface. The successful growth of SiC-free silicon nanoparticles covalently attached to the rGO surface was confirmed by using various spectroscopic and microscopic analyses. The rGO-Si delivered an initial discharge capacity of 1338.1 mA h g(-1) with capacity retention of 87.1% after the 100th cycle at a current rate of 2100 mA g(-1), and exhibited good rate capability. Such enhanced electrochemical performance is attributed to the synergistic effects of combining ultra-small silicon nanoparticles and rGO nanosheets. Here, rGO provides a continuous electron conducting network, whereas, ultra-small silicon particles reduce ionic diffusion path length and accommodate higher stress during volume expansion upon lithiation.