▎ 摘 要
In this study, we present the synthesis of reduced graphene oxide/hydroxyapatite (RGO/HA) hybrid materials by an environmental-friendly route. Graphene oxide (GO) was first simultaneously reduced and surface functionalized by one-step oxidative polymerization of dopamine (PDA). The bioinspired surface was further used for biomimetic mineralization of hydroxyapatite. When incubated in a simulated body fluid (SBF), the PDA layer enabled efficient interaction between the RGO surface and the mineral ions to improve the bioactivity, promoted the formation of the HA nanoparticles. A detailed structural and morphological characterization of the mineralized composite was performed. The HA-based hybrid materials exhibited no cytotoxic effect on L929 fibroblast cells, showing potential capacity of being a scaffold material for bone tissue regeneration and implantation. This facile strategy also can be a useful platform for other RGO-based nanocomposites.