▎ 摘 要
Graphene, a new two-dimensional (2D) material, has attracted considerable attention in recent years because of the metallic characteristics at terahertz frequencies. The phase coupling of multilayer graphene-coupled grating structures is normally used to realize multiple plasmon-induced transparency (PIT) spectral responses. However, the device becomes more complicated with the increase in the number of graphene layers. In this work, we propose a five-step-coupled pyramid-shaped monolayer graphene metamaterial and predict a dynamically controllable PIT with four transparency peaks for the first time in the monolayer graphene metamaterial. A tunable multi-switch and good slow light effect is predicted over the wide PIT window, and the maximum modulation depth is high up to 16.89 dB, which corresponds to 97.95%, while the time delay of the induced transparent window is as high as 0.488 ps, where the corresponding group refractive index is 586. The electric field distributions and quantum level theory are used to explain the physical mechanism of the PIT with four transparency peaks. The coupled mode theory (CMT) is employed to establish the mathematical model of the PIT with four transparency peaks, and the consistency between the simulated and the calculated results is nearly perfect. We believe that the pyramid-shaped monolayer graphene metamaterial could be useful in efficient filters, switches, and slow light devices.