▎ 摘 要
The temperature used in the chemical reduction of graphene oxide (GO) with hydroiodic acid has a significant influence on the removal of surface oxygenated functional groups, on the residual iodine species and on the rupture, stacking and graphitization of the graphene sheets in the reduced graphene oxides. The modification in the characteristics of the reduced graphene oxides induces changes in the surface area, the exposition of reduced graphene oxide entities and in the concentration of small CdS nanocrystals with strong confinement effect on the CdS-reduced graphene oxide hybrids. The hybridization of the reduced graphene oxide with CdS modifies in different way their photocatalytic behavior for hydrogen production from aqueous solutions of Na2S and Na2SO3 under simulated sunlight irradiation. Only the hybrid formed between the CdS and the reduced graphene oxide treated at higher temperature showed improved hydrogen production rate respect to the bare CdS reference associated with the better conductivity of the reduced graphene oxide and with the increase in the concentration of small CdS nanocrystals sith strong confinement effect observed in the hybrid.