▎ 摘 要
Advanced heat-managing textiles not only improve the comfort of individual but also reduce the energy consumption of the heat-managing systems of building. To meet the demand of heat-managing in a dynamic environment, responsive textiles with tunable thermal convection and radiation have been developed, while the design of fabrics with tunable thermal conduction remains unexplored. Here, a humidity-driven and flexible thermal conductance regulating material is developed that shows an unprecedented switching ratio up to 14x, which is composed of brick-and-mortar structured graphene and silk sericin (GS). This work investigates the microstructure variation in response to humidity experimentally and theoretically. The regulation can be ascribed to the hydration/dehydration of sericin and the subsequent changing in graphene-sericin interfacial thermal conductance. It is demonstrated that the GS can be facilely coated on ordinary textiles through dyeing to achieve responsive thermal-managing clothes with a significant and reversible response toward the variation of environment humidity.