▎ 摘 要
We propose an interferometry in graphene's reciprocal space without a magnetic field, employing strong ultrafast circularly polarized optical pulses. The reciprocal space interferograms contain information on the electronic spectra and topological properties of graphene and on the waveform and circular polarization of the excitation optical pulses. These can be measured using angle-resolved photoemission spectroscopy (ARPES) with attosecond ultraviolet pulses. The predicted effects provide unique opportunities in fundamental studies of two-dimensional topological materials and in applications to future petahertz light-wave-driven electronics.