▎ 摘 要
The equilibrium shape of a graphene sheet suspended over a silicon substrate with a narrow gap is investigated by introducing a continuum model. The displacement of the suspended graphene sheet, subject to electrostatic and van der Waals forces, was obtained by solving the equation of motion including the dissipation terms. The van der Waals force was calculated based on the quantum theory by considering the unique optical properties of graphene and their temperature dependence. The van der Waals force has a large effect on the equilibrium shape near the threshold value, below which a pull-in phenomenon occurs.