▎ 摘 要
Most polymers exhibit high flammability and poor degradability, which restrict their applications and causes serious environmental problem like "white pollution." Thus, titanate nanotubes (TNTs) were adopted to decorate graphene oxide (GO) by a facile solution method to afford TNTs/GO nanocomposites with potential in improving the flame retardancy and photodegradability of flexible polyvinyl chloride (PVC). Results show that the as-prepared TNTs/GO can effectively improve the thermal stability and flame retardancy than TNTs and GO, especially, the peak heat release rate and total heat release were reduced by 20 and 29% with only 2.5 wt.% loading. And more, the TNTs/GO also improve the photodegradability of PVC compared with the neat PVC. The reasons can be attributed to synergistic flame-retardant and photocatalytic effects between TNTs and GO. The present research could contribute to paving a feasible pathway to constructing polymer-matrix composites with desired flame retardancy and photodegradability, thereby adding to the elimination of white pollution caused by polymers.