• 文献标题:   Nitrogen Doped Graphene Generated by Microwave Plasma and Reduction Expansion Synthesis
  • 文献类型:   Article
  • 作  者:   ARIASMONJE PJ, MENON SK, ZEA H, OSSWALD S, LUHRS CC
  • 作者关键词:   doped graphene, reduction expansion synthesis res, microwave plasma
  • 出版物名称:   NANOSCIENCE NANOTECHNOLOGY LETTERS
  • ISSN:   1941-4900 EI 1941-4919
  • 通讯作者地址:   Naval Postgrad Sch
  • 被引频次:   10
  • DOI:   10.1166/nnl.2016.2055
  • 出版年:   2016

▎ 摘  要

This work aimed to produce nitrogen doped graphene from Graphite Oxide (GO) by combining the Expansion Reduction Synthesis (RES) approach, which utilizes urea as doping/reducing agent, with the use of an Atmospheric Plasma torch (Plasma), which provides the high temperature reactor environment known to thermally exfoliate it. The use of this combined strategy (Plasma-RES) was tried in an attempt to increase the surface area of the products. The amount of nitrogen doping was controlled by varying the urea/GO mass ratios in the precursor powders. X-ray diffraction analysis, SEM, TEM, BET surface areas and conductivity measurements of the diverse products are presented. Nitrogen inclusion in the graphene samples was corroborated by the mass spectral signal of the evolved gases generated during thermal programmed oxidation experiments of the products and by EDX analysis. We found that the Plasma-RES method can successfully generate doped graphene in situ as the urea and GO precursors simultaneously decompose and reduce in the discharge zone. When using the same amount of urea in the precursor mixture, samples obtained in Plasma-RES have higher surface area than those generated by RES, however they contain a smaller nitrogen content.