• 文献标题:   Landau levels in spin-orbit coupling proximitized graphene: Bulk states
  • 文献类型:   Article
  • 作  者:   FRANK T, FABIAN J
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:   Univ Regensburg
  • 被引频次:   0
  • DOI:   10.1103/PhysRevB.102.165416
  • 出版年:   2020

▎ 摘  要

We study the magnetic-field dependence of Landau levels in graphene proximitized by large spin-orbit coupling materials, such as transition-metal dichalcogenides or topological insulators. In addition to the Rashba coupling, two types of intrinsic spin-orbit interactions, uniform (Kane-Mele type) and staggered (valley Zeeman type), are included to resolve their interplay with magnetic orbital effects. Employing a continuum model approach, we derive analytic expressions for low-energy Landau levels, which can be used to extract local orbital and spin-orbit coupling parameters from scanning probe spectroscopy experiments. We compare different parameter regimes to identify fingerprints of relative and absolute magnitudes of intrinsic spin-orbit coupling in the spectra. The inverted band structure of graphene proximitized by WSe2 leads to an interesting crossing of Landau states across the bulk gap at a crossover field, providing insights into the size of Rashba spin-orbit coupling. Landau-level spectroscopy can help to resolve the type and signs of the intrinsic spin-orbit coupling by analyzing the symmetry in energy and number of crossings in the Landau fan chart. Finally, our results suggest that the strong response to the magnetic field of Dirac electrons in proximitized graphene can be associated with extremely large self-rotating magnetic moments.