• 文献标题:   Ultrafast formation of a transient two-dimensional diamondlike structure in twisted bilayer graphene
  • 文献类型:   Article
  • 作  者:   LUO D, HUI DD, WEN B, LI RK, YANG J, SHEN XZ, REID AH, WEATHERSBY S, KOZINA ME, PARK S, REN Y, LOEFFLER TD, SANKARANARAYANAN SKRS, CHAN MKY, WANG X, TIAN JS, ARSLAN I, WANG XJ, RAJH T, WEN JG
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:   Argonne Natl Lab
  • 被引频次:   0
  • DOI:   10.1103/PhysRevB.102.155431
  • 出版年:   2020

▎ 摘  要

Due to the absence of matching carbon atoms at honeycomb centers with carbon atoms in adjacent graphene sheets, theorists predicted that a sliding process is needed to form AA, AB', or ABC stacking when directly converting graphite into sp(3) bonded diamond. Here, using twisted bilayer graphene, which naturally provides AA and AB' stacking configurations, we report the ultrafast formation of a transient two-dimensional diamondlike structure (which is not observed in aligned graphene) under femtosecond laser irradiation. This photoinduced phase transition is evidenced by the appearance of bond lengths of 1.94 and 3.14 angstrom in the time-dependent differential pair distribution function using MeV ultrafast electron diffraction. Molecular dynamics and first-principles calculation indicate that sp(3) bonds nucleate at AA and AB' stacked areas in a moire pattern. This work sheds light on the direct graphite-to-diamond transformation mechanism, which has not been fully understood for more than 60 years.