• 文献标题:   Graphene/Au Hybrid Antenna Coil Exfoliated with Multi-Stacked Graphene Flakes for Ultra-Thin Biomedical Devices
  • 文献类型:   Article
  • 作  者:   TETSU Y, KIDO Y, HAO M, TAKEOKA S, MARUYAMA T, FUJIE T
  • 作者关键词:   antennae, graphene flake, inkjet printing, polymer nanosheet, wireless power
  • 出版物名称:   ADVANCED ELECTRONIC MATERIALS
  • ISSN:   2199-160X
  • 通讯作者地址:   Japan Sci Technol Agcy
  • 被引频次:   1
  • DOI:   10.1002/aelm.201901143 EA DEC 2019
  • 出版年:   2020

▎ 摘  要

Flexible electronics with organic substrates have been developed for bio-conformable devices and soft robotics. Although biodegradable polymers are preferred substrates for biomedical applications, they have poor heat durability, which precludes printing of conductive lines that require annealing at high temperatures (>250 degrees C). The fabrication of an ultra-flexible, inkjet-printed antenna coil with a resistivity of 4.30 x 10(-5) omega-cm is reported. It involves annealing of a graphene/Au antenna coil printed on a glass substrate and transferring onto a 182-nm-thick poly(D, L-lactic acid) nanosheet by exfoliation of multi-stacked graphene flakes. Then, a light-emitting device, powered wirelessly, even in the rounded, twisted, or attached states, is fabricated by mounting a blue LED chip on the nanosheet antenna coil. The self-deploying device is also stored in a water-soluble capsule, injected into a silicone bag, released from the dissolved capsule, and operated wirelessly. This work facilitates the hybridization of conductive lines and biodegradable polymers on ultra-flexible biomaterials for the biomedical application of flexible electronics.