▎ 摘 要
CoFe2O4/graphene oxide hybrids have been successfully fabricated via a facile one-pot polyol route, followed by chemical conversion into FeCo/graphene hybrids under H-2/NH3 atmosphere. These magnetic nanocrystals were uniformly decorated on the entire graphene nanosheets without aggregation. The morphology, chemical composition and crystal structure have been characterized in detail. In particular, FeCo/graphene hybrids show significant improvement in both permeability and permittivity due to the combination of the high magnetocrystalline anisotropy of metallic FeCo and high conductivity of light-weight graphene. This leads to remarkable enhancement in microwave absorption properties. The maximum reflection loss of FeCo/graphene hybrids reaches -40.2 dB at 8.9 GHz with a matching thickness of only 2.5 mm, and the absorption bandwidth with reflection loss exceeding -10 dB is in the 3.4-18 GHz range for the absorber thickness of only 1.5-5 mm. Moreover, the experimental relationship between matching thickness and frequency is found to obey the quarter-wavelength matching model, facilitating the design of FeCo/graphene hybrid film for practical application. The results suggest that the FeCo/graphene hybrids developed here can serve as an ideal candidate for the manufacture of light-weight and high-efficiency microwave-absorbing devices.