• 文献标题:   Three-dimensional graphene micropillar based electrochemical sensor for phenol detection
  • 文献类型:   Article
  • 作  者:   LIU F, PIAO Y, CHOI JS, SEO TS
  • 作者关键词:   graphene, micropilar, electrochemical sensor, phenol detection, enzyme
  • 出版物名称:   BIOSENSORS BIOELECTRONICS
  • ISSN:   0956-5663 EI 1873-4235
  • 通讯作者地址:   Korea Adv Inst Sci Technol
  • 被引频次:   61
  • DOI:   10.1016/j.bios.2013.06.055
  • 出版年:   2013

▎ 摘  要

A three-dimensional (3D) graphene incorporated electrochemical sensor was constructed for sensitive enzyme based phenol detection. To form the 3D graphene structure, polydimethylsiloxane (PDMS) micropillars were fabricated in the microchannel by using a conventional photolithography and the surface was modified with 3-aminopropyltriethoxysilane. Then, the negatively charged graphene oxide sheets were electrostatically adsorbed on the PDMS micropillar surface, and reduced in the hydrazine vapor. The resultant 3D graphene film provides a conductive working electrode as well as an enzyme-mediated sensor with a large surface area. After bonded with an electrode patterned glass wafer, the 3D graphene based electrochemical sensor was produced. Using the 3D graphene as a working electrode, an excellent electron transfer property was demonstrated by cyclic voltammetry measurement in an electrolyte solution containing 1 mM K3Fe(CN)(6) and 0.1 M KCI. To utilize the 3D graphene as an enzyme sensor, tyrosinase enzymes were immobilized on the surface of the graphene micropillar, and the target phenol was injected in the microchannel. The enzyme catalytic reaction process was monitored by amperometric responses and the limit of detection for phenol was obtained as 50 nM, thereby suggesting that the 3D graphene micropillar structure enhances the enzyme biosensing capability not only by increasing the surface area for enzyme immobilization, but also by the superlative graphene conductivity property. (C) 2013 Published by Elsevier B.V.