• 文献标题:   Silicon Substitution in Nanotubes and Graphene via Intermittent Vacancies
  • 文献类型:   Article
  • 作  者:   INANI H, MUSTONEN K, MARKEVICH A, DING EX, TRIPATHI M, HUSSAIN A, MANGLER C, KAUPPINEN EI, SUSI T, KOTAKOSKI J
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF PHYSICAL CHEMISTRY C
  • ISSN:   1932-7447
  • 通讯作者地址:   Univ Vienna
  • 被引频次:   8
  • DOI:   10.1021/acs.jpcc.9b01894
  • 出版年:   2019

▎ 摘  要

The chemical and electrical properties of single-walled carbon nanotubes (SWCNTs) and graphene can be modified by the presence of covalently bound impurities. Although this can be achieved by introducing chemical additives during synthesis, it often hinders growth and leads to limited crystallite size and quality. Here, through the simultaneous formation of vacancies with low-energy argon plasma and the thermal activation of adatom diffusion by laser irradiation, silicon impurities are incorporated into the lattice of both materials. After an exposure of similar to 1 ion/nm(2), we find Si-substitution densities of 0.15 nm(-2) in graphene and 0.05 nm(-2) in nanotubes, as revealed by atomically resolved scanning transmission electron microscopy. In good agreement with predictions of Ar irradiation effects in SWCNTs, we find Si incorporated in both mono- and divacancies, with similar to 2/3 being of the first type. Controlled inclusion of impurities in the quasi-1D and -2D carbon lattices may prove useful for applications such as gas sensing, and a similar approach might also be used to substitute other elements with migration barriers lower than that of carbon.