▎ 摘 要
The development of biomimetic technology offers excellent opportunities for the construction of therapeutic platforms with enhanced biocompatibility and antitumor performance. In this study, lipid-bilayer-coated reduced graphene oxide (rGO) modified with mesoporous-silica nanosheets was constructed via facile lipid self-assembly for effective synergistic chemophotothermal therapy. These nanodrug carriers were suitable for a high loading rate (53.3%) of doxorubicin (DOX). In vitro, after cellular internalization of these nanosheets, upon near infrared light (NIR) irradiation, the rGO in the nanoarchitecture generated heat not only for hyperthermia treatment but also for triggering lipid bilayer phase transition and on-demand controlled DOX release for chemotherapy. As expected, systematic in vivo antitumor evaluations confirmed the efficient solid tumor removal without recurrence. Our results revealed the excellent integration of the mesoporous-silica-coated rGO and lipid bilayer, which enabled the construction of a platform with the merits of both materials within a single unit. Thus, our results also indicate the great potential for the applications of graphene-based nanomaterials in biomedicine.